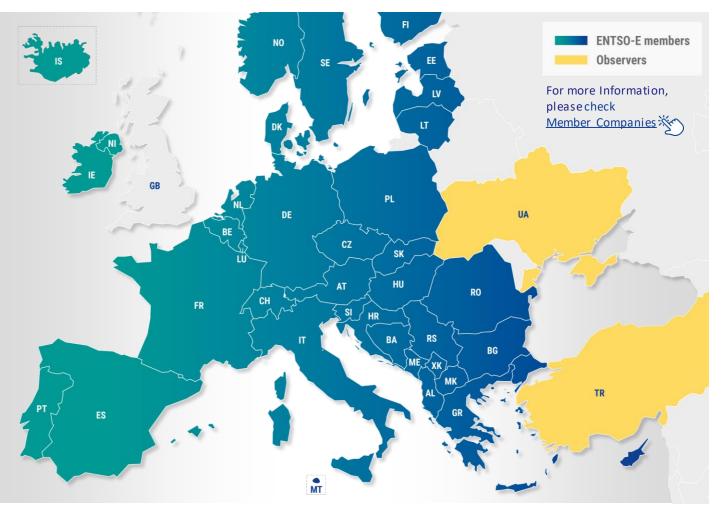
Potential for System Services and expected Connection Requirements for P2H2


November 2023, presented by Ioannis Theologitis and Manuel Froschauer

Prepared for H2GIGA - HyLeiT Workshop: Market development of electrolysers under consideration of system services

ENTSO-E: 39 TSOs operating one of the world's largest interconnected grids

- ENTSO-E is the association for the **cooperation** of the European transmission system operators (TSOs).
- 39 member TSOs, representing 35 countries and serving about 500 million citizens, responsible for the secure and coordinated operation of Europe's electricity system.
- ENTSO-E is also the **common voice of TSOs in Europe**.
- ENTSO-E serves the interests of society by optimising social welfare in its dimensions of safety, economy, environment, and performance.

Potential for System Services

ENTSO-E Study on potential of P2H2

5	xecutive summary
	Introduction6
2	Analysis of the technical potential of P2H2 technologies for providing system services7
	2.1 Technical characteristics of electrolyser technologies. .8 2.2 Definition of system services. .12
	2.3 Electrolyser potential for providing different system services14
3	Analysis of the balancing potential from hydrogen produced by P2H216
	 3.1 The potential interaction between electrolysers and VRES
ł	Market design considerations for the provision of system services by electrolysers
	 4.1 Conditions for the provision of system services by electrolyser projects
Δ.	nnex A - Sources on technical notential 44

Electrolysers capabilities of providing system services **Technical characteristics of electrolysers technology**

different P2H2 technologies – not all are at the same level of technological maturity	Alkaline	PEM	SOEC				
Cost, lifetime and efficiency*	 Typical capex is in the range of 700 €/kWe today and is expected to decrease slightly. Efficiency ranges from 63-70% and is expected to increase slightly over the next decade. 	 Typical capex is c. 1,200 €/kWe today but is anticipated to fall and be broadly similar to AEL costs by 2030. Efficiency is in the range of 61-70% and is expected to increase slightly over the next decade. 	 Typical capex is c. 3,000 €/kWe and is expected to fall by more than 40%. Efficiency is in the range of 74-91% and is anticipated to increase further over the next decade. 				
Plant size	 Currently, Toshiba operates the largest alkaline electrolyser of 10 MW. Future plant capacity is expected to increase up to 200 MW. 	 Air Liquide recently inaugurated a 20 MW PEM electrolyser. Future plant capacity is expected to increase up to 200 MW. 	 Currently, the largest SOEC electrolyser has a capacity of 225 kW. Future plants are anticipated to reach a capacity of 100 MW. 				
Flexibility	 The start-up time is in the range of 1 to 10 minutes. Ramp-up / down response is 0.2 - 20 % / second 	 The start-up time is in the range of 1 second to 5 minutes. Ramp-up / down response is 100% / second. 	 There is very limited information on SOEC electrolysers' characteristics with respect to flexibility. 				

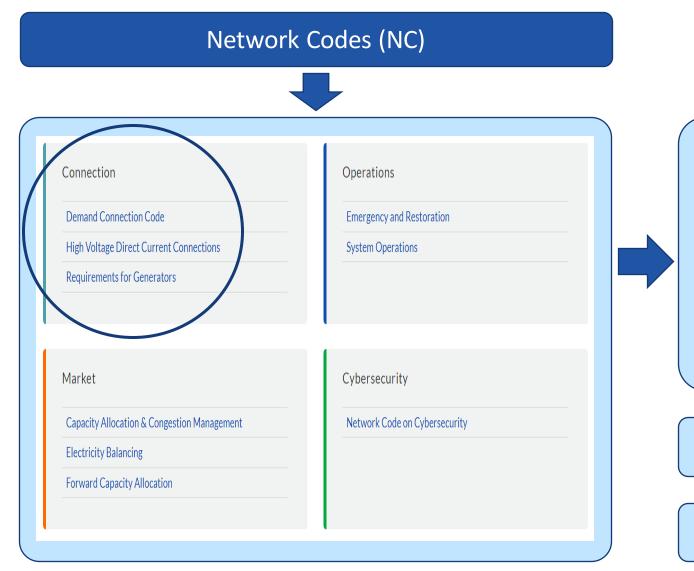
*Efficiency is defined as the energy output in H2 as a percentage of energy input in electricity

We analysed three

Electrolysers capabilities of providing system services **Identification of system services and their technical requirements**

We have identified a set of system services. Then, for these services, we have listed some of the key technical features.

	Full Activation Time	Minimum Bid Size	Symmetry
Frequency Containment Reserves (FCR)	 30 seconds 	- 1 MW	 Yes
Automatic Frequency Restoration Reserves (aFRR)	 5 minutes 	= 1 MW	 No
Manual Frequency Restoration Reserves (mFRR)	 12.5 minutes 	 1 MW 	 No
Reserve Restoration (RR)	 30 minutes 	 1 MW 	 No
Voltage Control	 Few seconds to 15 minutes 	• NA	 No
Services for Congestion Management	 15 minutes 	 1 to 10 MW 	 No


Electrolysers capabilities of providing system services In theory, electrolysers could provide most system services

	Alkaline		PEM			SOEC	
	Today	2030	Today	2030	Today	2030	
FCR	Yes with limits	Yes with limits	Yes with limits	Yes with limits	No	Uncertainty about flexibility	
aFRR	Yes with limits	Yes with limits	Yes	Yes	No	Uncertainty about flexibility	
mFRR	Yes	Yes	Yes	Yes	No	Uncertainty about flexibility	
RR	Yes	Yes	Yes	Yes	No	Uncertainty about flexibility	
Voltage control Electrolysers can provide reactive power if they are equipped with self-commuted rectifiers						ectifiers	
Congestion management	Yes	Yes	Yes	Yes	No	Uncertainty about flexibility	

Expected Connection Requirements

About Connection Network Codes

Connection NC:

CNC is the **regulatory platform** at European level which define the necessary **technical capabilities** of power generating modules, distribution systems connected to transmission systems, demand facilities, and HVDC systems during normal and disturbed system operating conditions.

- NC RfG
- NC DC
- NC HVDC

National regulation on connection codes

Detailed project specification and connection agreement is based on CNCs

entso_{(entso}

ACER-Draft

- Electromobility, heat pumps, P2G demand units are expected to be connected *en masse* in the future
- · Currently, the connection rules for these units follow on the divergent national approaches
- · Harmonisation at the EU level can provide for the economies of scale and the level-playing field

Additional national requirements possible

ACER: NC DC Draft

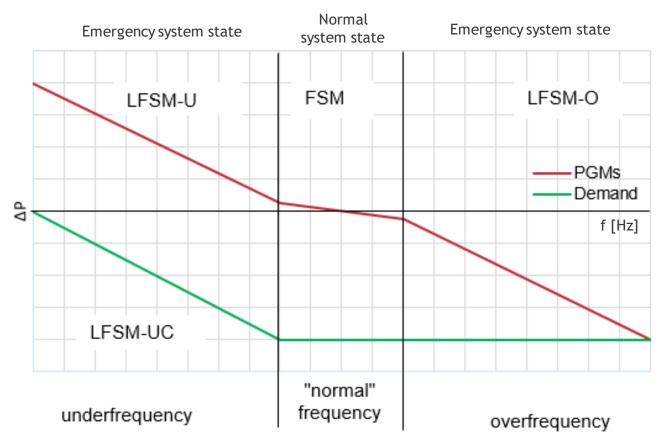
Threats // Mitigation Measures

Decreasing LFDD potential due to DER

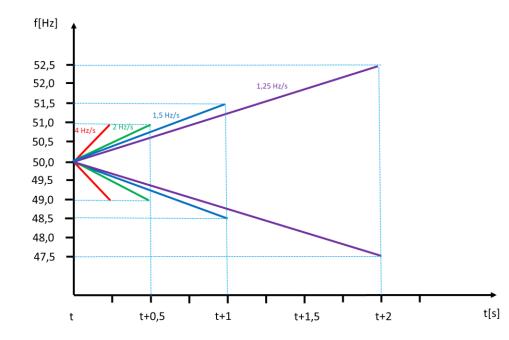
LFSM-UC: Limited frequency sensitive modes apply in underfrequency system states on demand facilities.

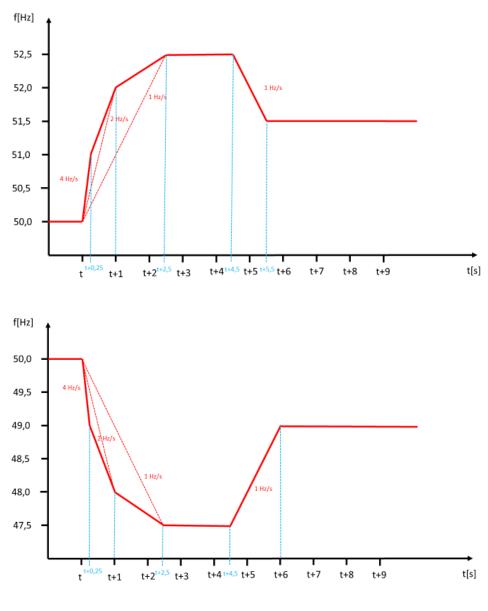
System splits

RoCoF: Rate-of-Change-of-Frequency withstand capability


Mass disconnections in fault conditions

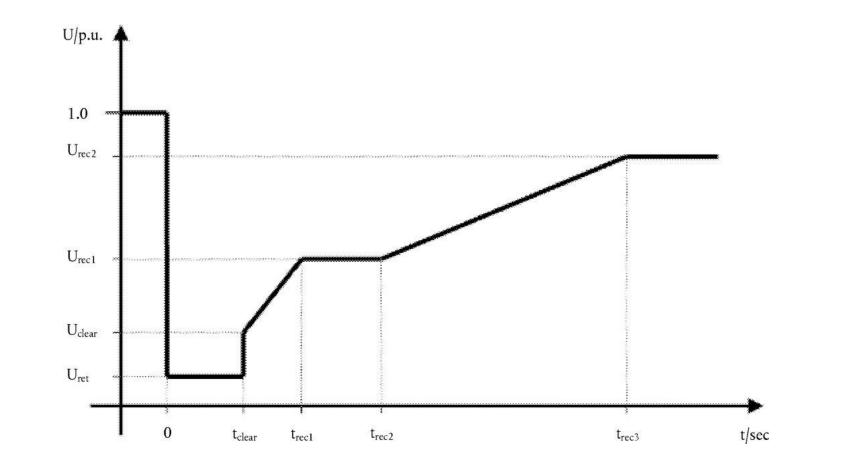
FRT: Fault-Ride-Through capability


What does LFSM-UC mean and why is needed?


- LFSM-UC means "Limited frequency sensitive mode underfrequency in consumption"
- Regular LFSM modes are required for power-generating modules (NC RfG)
- LFSM-UC capability works in a similar way as LFSM-O/U are required for PGMs but with modification related to demand facilities
- LFSM modes are applied autonomously when the frequency exceeds set thresholds (emergency system state)

RoCoF whithstand capability for P2G

- Withstand high Rates-of-Change-of-Frequency
- The control scheme must cope with it stably



15

FRT - Requirement

• P2G shall stay connected to the network and continue to operate stably after the power system has been disturbed by faults

Thank you very much for your attention

Our values define who we are, what we stand for and how we behave. We all play a part in bringing them to life.

We are ENTSO-E