

Market development of electrolysis systems taking system services into account

Paul Donnellan Power Technology

1

Market development of electrolysis systems taking system services into account

- Core requirements
- H2 in the power grid
- H2 on/off grid

2

Core requirements

- Power quality INTO the electrolyser (DC)
- Power quality INTO the grid (harmonics, power factor, connection compliance)
- Match of electrolyser performance with requirements / revenues for ancillary services
 - Stack
 - BoP
- Balance of costs and benefits
 - CAPEX (more filtering, pf compensation etc.)
 - OPEX (degradation/lifetime)
- Unknowns?
 - Long term degradation/lifetime effects for DC power quality (amplitude, frequency inc. cycling)

H2 in the power grid

• Short term – flexible demand

• Long(er) term - storage

H2 on/off grid

H2 on/off grid e.g. FlexH2 Project

FlexH2 Project

Flexible Offshore Wind Hydrogen Power Plant Module

dr.ir. Yin Sun Shell Global Solution International B.V. yin.sun@shell.com 2023.11.01

a GROW initiative

FlexH2 project – hydrogen perspective

Disadvantages

Traditional concept

- 1. Very high grid connection cost (and increasing)
- 2. Issue of grid congestion
- 3. This is not "green H2"

FlexH2 project – hydrogen perspective

Recent concept: parallel connection of grid and H2 production

FlexH2 project – hydrogen perspective

FlexH2 concept: directly-coupled offshore wind and H2 production

