

Workshop, 05. December 2023: Modelling of electrolysis plants for power system studies

Nils Wiese (Fraunhofer IEE): Dynamic electrical models for power system integration

System Services

10 GW electrolysis in 2030: Grid connection codes for electrolysis plants are required to ensure system stability

The rectifier must meet the requirements of the connection point

Grid Codes and markets

In some cases, electrolysis plants must follow the volatile supply from renewable energies

Dynamic grid studies on the interaction of electrolysis plants with grid equipment, loads and generation plants are required

	NSDL-Kategorien	NSDL-Produkte	Beschaffung	Status-quo für Elektrolyseure
	Ressourcen adäquanz	Angebotsorientierte Lastflexibilität	Energy-only-Markt	
			Kapazitätsmarkt	Markt noch in Diskussion
	Engpass- management	Redispatch	Kostenbasierte Beschaffung	nur Erzeugungsanlagen
		Zuschaltbare Lasten	Ausschreibung	restriktive Ausgestaltung
	Frequenzhaltung	Primärregelung	Regelleistungs- und Regelarbeitsmarkt	
		Sekundärregelung		
		Minutenreserve		
	Spannungs- haltung	Blindleistung	Marktgestützte Beschaffung	0
	Systemstabilität	Limited Frequency Sensitivity Mode (LFSM)	Tashuisaha Aufandan wa	\bigcirc
		Fault Ride Through (FRT) Fähigkeit	rechnische Anförderung	
		Momentanreserve	Marktgestützte Beschaffung	Markt in Entwicklung
	Versorgungs- wiederaufbau	Schwarzstartfähigkeit	Marktgestützte Beschaffung	nur mit Batterien
	Teilnahme bereits heute mög	glich Märkte zeitnah in Kraft; Teilnahme von Elektrolyseuren in naher Zukunft möglich	Märkte noch in Entwicklung bzv Elektrolyseuren nicht vorgesehr	v. Teilnahme von en

Source: https://www.50hertz.com/Vertragspartner/Netzkunden/Netzanschluss

System Services Example LVRT

Position paper from the German TSOs on FRT (fault-ride-through):

"If several gigawatts of load were to be suddenly and unplanned disconnected from the grid, this would not only have a massive impact on the power balance in the grid, but also on load flows and dynamic processes, which could jeopardize the stability of the grid with regard to the planned expansion of electrolysis plants. Voltage fluctuations (e.g. due to short circuits) cannot be completely ruled out at any grid node by the grid operator's existing technical measures. It is therefore necessary for system security that electrolysis plants can ride through these faults in the future (fault-ride-through)."

https://www.netztransparenz.de/de-de/%C3%9Cberuns/Studien-und-Positionspapiere/FRT-Anforderungen

Grid Integration Studies

Preparation

Which system/grid is under investigation?

What are the test cases? (LVRT, frequency response etc.)

What are the functionalities are offered by rectifier and control?

What influence does the DC side have?

Dynamic test cases dynmic models Software: Simulink/PowerFactory etc. **Rectifier and its control and DC-Side can be simplified to**

varying degrees, like neglecting PLL-dynamics or rectifier topology.

Rectifier Hardware and Control

Passive rectifier

Diode

Active rectifier

- Thyristor
- IGBT etc.

Control

- Current controlled: conventional battery inverter (PV&Wind) needs grid voltage as reference penetration in power system is limited
- Voltage controlled: grid-forming control needed for replacement of synchronous generators provides (in case of a load/PV/Wind asymmetrical) instantenous reserve

Cell model

Elektrolyzer-Stack

- No resistive load
- Characteristic similar to a diode
- Power depends on voltage
- System (dynamics) cannot only be described by the characteristic curve of a cell
- Simplified models are good for fast computation

Fig. 1: Electrolyser alkaline cell characteristic ¹ with approximated graphs for simulation model

https://www.sciencedirect.com/topics/engineering/alkaline-water-electrolysis Alkaline Water Electrolysis - an overview | ScienceDirect Topics

Limitations

Plant behavior

- Dynamics depend on technology
- Ramp-up relevant for behavior after AC-faults/LFSM
- Q-support depending on rectifier

		Aircuiric		JOLC
		Flexibility		
Load range (relative to nominal load)	Today	10-110%	0-160%	20-125%
The overload condition can be kept for a limited amount of time, requires oversized equipment and entails efficiency losses.	2030	Expected by 2050: 5 - 300 %	Expected for 2050: 5-300 %	Expected for 2050: 0 - 200 %
Start-up time (warm, cold)	Today	1–10 minutes	1 second – 5 minutes	< 60 minutes
	2030	Not available	Not available	Not available
Shutdown	Today	1–10 minutes	1 second – 5 minutes	Not available
	2030	Not available	Not available	Not available
Ramp-up / Ramp- down	Today	0.2 – 20 % / second	100% / second	SOEC have a system response time of few seconds.
	2030	Not available	Not available	Not available
Reactive power	 Electrolysers ca by other equipm converters. 	nnot provide reactive power <i>per s</i> nent in the module. However, elect	e as they are a DC loads and limite rolysers may be able to provide vol	d reactive power is consumed tage control through their

Alkaling

Figure 2: Electrolysers' technical characteristics

ENTSO-E: Potential of P2H technologies to provide system services

SOFC

Plant behavior 1

- Presettable characteristic curve
- Direct switch-off in the event of undervoltage

Plant behavior 2

- Presettable characteristic curve
- Reactive power support

Simplified model in PowerFactory LVRT

Plant behavior 1

- Reactive power can be preset
- Q increases after fault with constant power factor
- No Voltage support during fault!

Simplified model in PowerFactory LVRT

[p.u.] |

Plant behavior 2

- Reactive power can be preset
- Q is prioritized in the event of a fault
- P according to characteristic curve

Fraunhofer

Ely-SR

≈ ⁄

Ely

Simplified model Park with power loss

- Wind speed decreases
- Reduction of wind power plant active power output

Park with park controller

Simplified model Park with power loss

- Power exchange is controlled to 0
- Reduction of hydrogen production by electrolyzer

Simplified model Park and frequency drop

- -0.5 Hz frequency jump
- Faster response thanks to battery (limitation of electrolyzer ramp down)
- Battery compensates electrolyzer (measurement of P elec. required)
- Overshoot comes from frequency measurement

Voltage Controlled Electrolyzer

Grid-forming control

- Instantenous reserve in case of falling frequency
- LVRT with Q support
- Can respect ramp up/current limits

DC-Side

- DLL from IEE PEM cell model
- Scaled up by series and parallel connections of cells

PEM-electrolyzer with gird-forming control PowerFactory model from library with extensions

Grid-forming Converter Frame: Frame for grid-forming control of a PWM converter with DC control

PEM-electrolyzer with gird-forming control LVRT

- Short-circuit in the grid
- DC voltage decreses
- Slow power increse according to ramp-up limit

PEM-electrolyzer with gird-forming control LVRT

- Current limitation active
- Adapted limitation (reactive current setpoint)
- Q prioritized

PEM-electrolyzer with gird-forming control

Frequency drop

- Frequency drop in the grid
- Grid-forming control reduces power consumption instantaneously! –
- It provides instantaneous reserve

PEM-electrolyzer with gird-forming control

- Frequency increase in the grid
- Grid-forming control blocks inst. reserve by additional controller respecting ramp-up limits

t in s

-0,9

-1,1

Conclusion

Grid integration studies with electrolyzers needed in order to ensure system stability

Different model approaches for different studies

Rectifier, control and DC-side must be taken into account

Contact

Nils Wiese Netzregelung und Netzdynamik (Grid Control and Grid Dynamics) nils wiese@iee.fraunhofer.de

Fraunhofer IEE Joseph-Beuys Straße 8 34117 Kassel | Germany www.iee.fraunhofer.de **Fraunhofer** IEE