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Background & Motivation

▪ Model development as part of the IntegrH2ate 
research project

▪ Aims to increase the economic viability of PEM 
electrolysis by utilizing the by-products heat 
and oxygen

▪ The waste heat is to be raised to a higher 
temperature level with a heat pump 

▪ Control strategies are being developed for the 
coupled electrolyser-heat pump system 

▪ For the development of control strategies, the 
dynamic thermal behavior of the PEM 
electrolyzer must be known 
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Background & Motivation

▪ So far, only highly simplified lumped parameter models
1

and very complex 3D finite volume approaches
2

exist to 
describe the (dynamic) thermal behavior

▪ Some quasi-2D approaches exist, but without description 
of heat transfer in the flow channels

3

▪ Therefore, a quasi-2D simulation model with focus on the 
heat transfer processes in the individual cells has been 
developed
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Model Description – General Structure 
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Model Description – Bipolar & End Plates

▪ Bipolar and end plates are treated as lumped capacitance 
masses with a uniform temperature at each timestep:

ሶ𝑄𝐹𝐶/𝑎𝑚𝑏 = 𝐴 ⋅ α ⋅ (𝑇𝐹𝐶/𝑎𝑚𝑏 − 𝑇)

▪ The material is assumed to be titanium 

▪ End plates are considered separately because of their larger 
volume 
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𝐶𝑡ℎ
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Model Description – Flow Channels

▪ The dynamic energy balance is calculated using the 
specific enthalpy of the water-gas mixture:

𝑚
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Model Description – Flow Channels

▪ Parallel flow field is assumed with rectangular flow 
channels 

▪ Heat transfer coefficient is calculated using a general 
correlation for heat transfer in vertical channels with 
gas-liquid flow

1

▪ Pressure loss is calculated using a universal approach 
for frictional pressure drop in mini/micro-channels 
with gas-liquid flow

2

Literature:

[1] Shah, Mirza M. “General Correlation for Heat Transfer to Gas–Liquid Flow in Vertical Channels.” In: 
Journal of Thermal Science and Engineering Applications 10, no. 6 (2018). DOI: 10.1115/1.4040652.

[2] Kim, S.-M. and I. Mudawar. “Universal approach to predicting two-phase frictional pressure drop for 
adiabatic and condensing mini/micro-channel flows.” In: International Journal of Heat and Mass Transfer 
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Source: Arvay et al. (2013)
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Model Description – Membrane Electrode Assembly (MEA)

▪ MEA is treated as a lumped capacitance mass with the porous transport 
layers being considered the only relevant thermal mass:

▪ The material is assumed to be titanium with a porosity of Φ = 0.37

▪ It is assumed that the outgoing mass flow temperatures are equal to the 
MEA’s operating temperature

▪ Gas Crossover is described with formulations from Afshari et al. (2021)
1
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Literature:

[1] Afshari, E. et al. “Performance assessment of gas crossover phenomenon and water transport mechanism in high pressure 
PEM electrolyzer.” In: International Journal of Hydrogen Energy 46, no. 19 (2021). DOI: 10.1016/j.ijhydene.2020.10.180.
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𝑒𝑛𝑡ℎ𝑎𝑙𝑝𝑦
𝑓𝑙𝑜𝑤𝑠 𝑖𝑛

−

𝑗
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Model Description – Membrane Electrode Assembly (MEA)

▪ Steady-State Cell voltage is calculated in the MEA:

𝑉𝑐𝑒𝑙𝑙 = 𝑉𝑟𝑒𝑣 + 𝑉𝑎𝑐𝑡 + 𝑉𝑜ℎ𝑚

Vrev: Reversible voltage

Vact: Activation overpotential

Vohm: Ohmic overpotential

▪ Concentration overpotential is neglected because 
of its minimal effects at typical operating current 
densities

Source: Amores et al. (2017)
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Model Validation Parameter Value Unit

Max. Power 1.88 kW

Max. Current 75 A

Max. Voltage 25 V

Number Cells 10 -

Cell Area 30 cm2

Pressure Anode 1 bar

Pressure Cathode 5 bar
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Measured Data

Fitted Curve

i0,an,std = 6.08e-07 A cm-2

Eexc = 61 767 J mol-1

Epro = 10 242 J mol-1

σmem,std = 5.2 S cm-1

αan = 0.7

▪ Experimental data from a 1 kW PEM electrolysis test stand was 
used

▪ Data was not ideal due to lack of load steps but could be use 
to test the general model functionality

▪ Missing parameters for modeling the electrochemical behavior 
were determined with a non-linear least squares analysis 
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Model Validation

▪ Experimental data from a 1 kW PEM electrolysis test stand was 
used

▪ Data was not ideal due to lack of load steps but could be use 
to test the general model functionality

▪ Missing parameters for modeling the electrochemical behavior 
were determined with a non-linear least squares analysis 

▪ Results: 

▪ Voltage Deviation: ΔVMAE = 0.088 V 

ΔVmax = 0.40 V 

▪ Temperature Deviation: ΔTMAE = 0.24 K

ΔTmax = 0.63 K
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Summary

▪ Many assumptions have been made which need to be 
substantiated

▪ Flow field design

▪ Applied materials

▪ …

▪ Experimental data was not ideal for assessing dynamic thermal 
behavior 

▪ New data acquisition with larger load steps last week, 
evaluation will take place in the near future 

▪ Construction of our own experimental setup next year
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Next Steps 

▪ Goal: Development of a control strategy for 
the coupled electrolyser-heat pump system

▪ System identification based on the complex 
simulation model in Modelica

▪ Design of a model predictive controller (MPC) 
based on the identified dynamic model of the 
coupled system

▪ Comparison with a classical PID control system
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Thank you for your 
attention!
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