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Iberdrola, an international energy leader
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About Iberdrola Innovation Middle East ¢dd Iberdrola

Iberdrola Innovation Middle East is a world-leading Iberdrola Innovation ME - develop digital solutions for the energy sector

innovation company, located in Qatar Science & Technology

Park. IBME aims at defining 'the digital utility', developing

innovative digital solutions for renewable energy integration,

smart grids and energy efficiency and conservation.
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Networks Renewables Customers
Enhancing grid planning, Enabling the integration of Empowetring prosumers in
operations and maintenance renewables and storage the new energy paradigm
[ People: expertise in Power Systems, full-stack Software Development and Artificial Intelligence ]
[ Partners: R&D partnerships with Universities, Start-ups and Industrial companies ]
[ Premises: state-of-the-art facilities including Digital Innovation Lab ]

Through its expertise in the areas of electrical and electronics engineering, software
development, big data, machine learning and artificial intelligence, the centre searches

for new solutions for the following applications:



Iberdrola and Green Hydrogen: The Case of Puertollano (@ Iberdrola

Iberdrola group has more than 50 green hydrogen development projects (including ammonia and green methanol) in eight countries.

When commissioned, Puertollano was recorded as Europe's largest green hydrogen plant for zero-emissions fertilisers production.
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Read More:
Iberdrola commissions its largest green hydrogen plant for industrial use in Europe

Iberdrola: a pioneer in the development of green hydrogen



https://www.iberdrola.com/about-us/what-we-do/green-hydrogen/puertollano-green-hydrogen-plant
https://www.iberdrola.com/about-us/what-we-do/green-hydrogen
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Introduction to GFM Technology



Power Converters in Grid-Connected Systems (@ Iberdrola

Classical Approach ’ % Electric
d&_ Network
« Reliance on the existence of ‘strong-grids’ with large yd -
Synchronous generators. %
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- Power converters are controlled in ‘grid-following’ mode. & II _% %/

* For decades: successfully achieved the purpose of power

injection into the grid. /%\

Increased RES penetration

« Decreased network strength.
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* Impact on ancillary services provision and system stability.
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Power Converters in Grid-Connected Systems (@ Iberdrola

But how can converters control help here?
* Well-coordinated network with optimal design and robust controls - Improved operational reliability.
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Grid-Following to Grid-Forming: Emerging Ancillary Services Paradigm (@@ Iberdrola

Controllers' equivalent behaviour

Switch can be ON (grid-

IBR equivalent Sv'\\lli;g? ::::e:)til; Zgrid A cauvatent connected) or OFF (islanded) Zgrid
N » Controls current magnitude + Controls terminal
and phase voltage and frequency
Ugrig * RequiresaPLL U * Doesn'tuse PLL
+ Stable under high SCR grid + Stable under low SCR
Control * No black-start capabilities Control * Black-start capabilities
Demonstration of grid-following control mode Demonstration of grid-forming control mode
Grid-codes development ot )
« Classical view: IBRs disconnections during faults. | Current )
o . . . . . . I N, _ .
Revised view: Cannot afford disconnecting large IBRs during faults! mertia | [ system
Support | '.__ Strength |
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. - Control | | Control |
« Energy buffer availability. o) \ e
System .
Restart |

Key network-support services 8



Grid-forming Technology Overview ({4 lberdrola

So, how does it work? Different ‘methods’ to achieve a common objective
« Self-generated voltage and angle reference.

. o Power Virtual Matchin
« Power-based grid-synchronization. Droop Control Synchronizing Synchronous Controlg

Control Machine (VSM)

« Ability to ‘mimic’ the behaviour of synchronous generators.

« Different attainable control structures.

GFM control ‘in-action’
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Grid-forming Technology Overview: Challenges & Opportunities (@ loerdrola

Example 1: Frequency Support Example 2: FRT & Protection

* Virtual-inertia role in frequency support. * Requirement: maintain connection during faults.
» Parameters tuneability impact. * Grid-code compliance.
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Grid-forming Technology Application: Network Restoration

University of

Strathclyde

« lberdrola
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Comparison between real-time hardware and software results
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What Enables True Grid-Forming Capability? (@ Iberdrola

What does it take to optimally operate in GFM mode? |
« Aninfinite, dispatchable, DC source - ideal scenario. Does not exist! éiﬁﬂﬁi /
* In this slide, we look at some practical implementations. o
Scenario 1: MPPT Operation - GFM Scenario 2: Sub-MPPT Operation - GFM

4134 B4 134

+ Maximum power injection. * Reduced steady-state power injection.
« Cannot effectively react to bidirectional disturbances. + Able to dispatch power in both directions.
+ Limited dispatchability. * Increases the array of provided services.

Scenario 3: Solar PV coupled with BESS

Finding the ‘sweet-spot’ trade-off

* Operationin GFM mode may range from simple software to
extensive hardware upgrades.

« Key factor: cost and size optimization.

Improved operation range with higher flexibility. What about flexible loads? (e.g., hydrogen electrolysers)
« Able to couple MPPT and dispatched power operation. 12



Grid-forming and Hydrogen Electrolysers

« lberdrola

How Can Electrolysers Participate in GFM Systems?

« Standalone versus co-located configurations.

* Array of services influenced by investment cost and the mix of
technologies used.

* Any configuration must consider the units operational limits such as
power ramp-rates, impact on the equipment lifetime ... etc.

Scenario 1: Standalone Electrolyser

o ;

« Operation with up/down flow regulation (load-mode only).
Highly dependent on H, tank storage.
Limited array of ancillary services.
No internal energy buffer: not a ‘true’ grid-former.

Points of discussion:

« Scale/size of hydrogen electrolysers and their GFM impact.
« Technology status and maturity.

* Unlocked benefits to the grid versus operational risks.

Scenario 2: Electrolyser with fuel cell (dispatchability unlocked)

N\
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+ The addition of fuel cell provides the ‘energy-buffer’ element.
* In theory, can be used as an integrated unit for ‘power-in & power-out’
ancillary services.

Scenario 3: Electrolyser with external resource

- Similar to scenario 2 in terms of electrical operation principle.
« FC can be replaced/complimented with other resources such as BESS and
solar PV ... etc.



Takeaway Messages (@@ Iberdrola

Grid-forming Control

Increased converter-based generation grid-integration offers wide array of benefits, and presents a set
of interesting challenges.

Innovative schemes are required to unlock the full converters control flexibility.
Grid-forming control provides a favourable operation range, extended to weak grid conditions.
The connected assets to the converter DC side play a crucial role in its operation.

Mimicking the operation of synchronous generators requires having dispatchable resources with
up/down regulation and active energy buffers.

Hydrogen Electrolysers Context

Standalone electrolysers can operate within GFM systems, but cannot ‘form’ the grid themselves.
Coupling electrolysers to other resources maximizes the range of services they can provide.

Incorporating the resource limits into the control is critical to maintain system reliability. 14
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