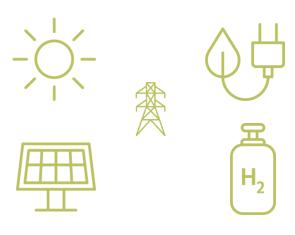


New Inverter Technologies for Large Electrolyzer Systems

HyLeiT / DERlab Workshop

26.09.2025


Dr. Ralf Juchem, SMA Solar Technology AG / Dr. Stefan Wettengel, TU Dresden

New Inverter Technologies for Large Electrolyzer Systems

- [¬] Agenda
 - Scope
 - Tkey findings in H2Giga / HyLeiT project
 - Basic Technology decision
 - Steps to higher power density and lower cost
 - Power Electronics (TU Dresden, Dr. Wettengel)
 - [¬]Outlook
 - [¬] Market Perspective

Scope

- Tengineering of a power supply for large electrolyzers
 - >> 10 MW
- Utilizing SMA high volume series product manufacturing experience from PV and Battery applications
- Easy grid integration (turn key solution)
- Grid support functionality

Basic technology decision

- Currently, Thyristor technology is the state-of-the art power electronics technology for high power rectifiers
 - We conducted deep and thorough investigations in the Pros and Cons of Thyristor- vs. Transistor- (Mosfet) Technology with TU Dresden, Chair of Power Electronics

¬ Conclusion:

- [¬] Transistor beats Thyristor mainly because of these reasons:
 - Much easier grid integration and even grid supporting functionality
 - Highly reduced project specific engineering (turn key solution, software focus)

Steps to higher power density and lower cost

- Improved cooling
 - Better heat transfer from power semiconductors to heat sink
 - Investigation of new layer-materials for a better heat transfer
 - Improved heat sink performance
 - Air cooling with optimized air streaming (noise reduction as a nice side effect)
- Using higher voltages above 1500 V
 - ¬ Improved efficiency
 - Higher power density

Power Electronics

¬ Presentation of Stefan Wettengel, TU Dresden

Outlook

- ¬ Further research is ongoing
 - SMA-internal- and new public funded projects to be started
- Continuous transfer of project results to series product development

Current SMA perspective on the Hydrogen market (1/2)

- Currently the Hydrogen market experiences a significant slow down
 - Cost of green Hydrogen is still too high (higher than promised?)
 - Political reasons (US and EU government, focus shift to military tech)
 - Some electrolyzer companies (especially PEM) are in financial troubled waters
 - Market shake-out is expected
- Benefits from using active frontend rectifiers to support the grid are still not well known in the industry
 - ¬ Still a low awareness for grid related challenges when ramping up electrolytic hydrogen

Current SMA perspective on the Hydrogen market (2/2)

- The trend to higher voltages is currently weak
 - [¬] But SMA is quite confident about this on the medium-term
- We see a trend to large electrolyzer plants (> 100 MW) and also one towards small scale applications (< 10 MW) for filling stations
- SMA is still optimistic about the future Hydrogen market
 - Resuming market growth from 2027 on with more Chinese electrolyzer technology
 - Green ammonia and green steel production will become an important future field of activity for many countries

Thank you!

Name Dr. Ralf Juchem

Phone: +49 561 9522-4723 • Mail: Ralf.Juchem@sma.de

New Inverter Technologies for Large Electrolyzer Systems

8th HyLeiT Workshop • 26. September 2025

Agenda: New Inverter Technologies for Large Electrolyzer Systems

- Transistor-Based Rectifier for Electrolysis
 - Introduction
 - Test Setup
 - Oscillations & Damping
 - Full-Scale Demonstrator
- TUD: Chair of Power Electronics
 - HyLeiT Publication List
 - Power Semiconductor Laboratories

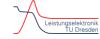
Introduction: Transistor-Based Rectifier

No usage of thyristors

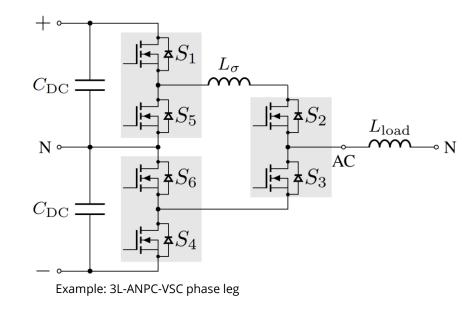
- Investigated in a past publication¹
- ¬ Require substantial reactive power compensation + filtering
 → large, expensive
- Also: insufficient for grid support

Future grids will require large loads to actively support and stabilize the grid

Rectifier:	Thyristor	MOSFET
Efficiency	+	+
Power Density*	-	+
System Cost (CAPEX)	+	+
Grid Compatibility / Grid Services	-	+
Modularity*	-	+


^{*} Including: grid filter, PCC connection and expected planning effort per plant

^{1:} S. Puteanus, S. Wettengel, M. Meißner and S. Bernet, "Multipulse Rectifiers for Large Scale Water-Electrolysis - Reactive Power and Harmonics," *ECCE Europe 2024*, Darmstadt, Germany, 2024, pp. 1-8



Introduction: Transistor-Based Rectifier

SiC-MOSFET based, active rectifier

- Employing novel 2.3 kV SiC MOSFETs
- Two main options:
 - Two-Level Voltage-Source-Converter (2L-VSC)
 - Three-Level Active-Neutral-Point-Clamped Voltage-Source-Converter (3L-ANPC-VSC)
 - Challenge: using half-bridges in a three-level configuration
 + fast switching

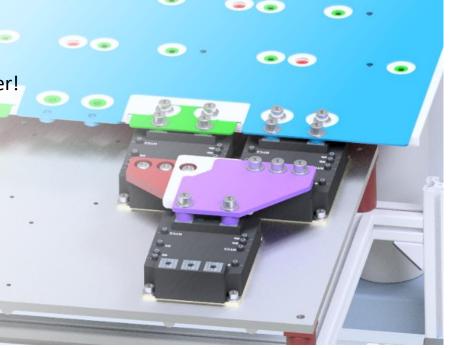
Test Setup: 3L-ANPC-VSC

New Semiconductor Module:

2.3 kV SiC MOSFET half-bridge

Datasheet values are nice → Tests are better!

Double pulse test setup


Tests of all comutation types possible

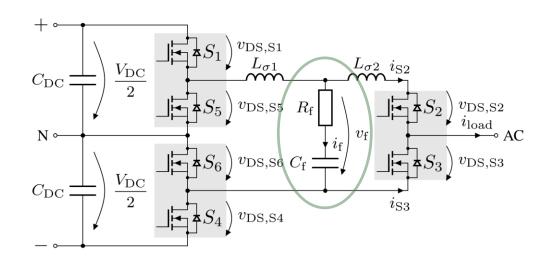
Target Parameters

DC-link voltage: $V_{DC}/2 = 1350 \text{ V}$

Load current: I_{load} ≤ 1600 A

Temperature: $-20 \text{ °C} \le T_{v_i} \le +150 \text{ °C}$

3D-CAD render of one 3L-ANPC-VSC phase leg and copper plates on a heat sink.



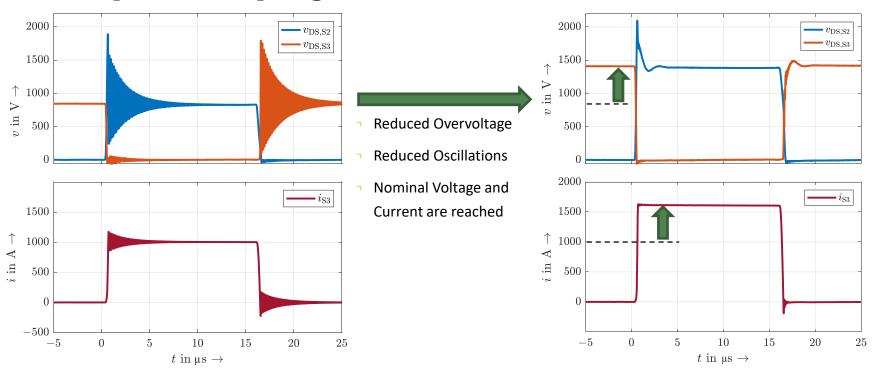
Damped Decoupling Circuit

- Required for overvoltage reduction
- Electrical dimensioning is straight-forward

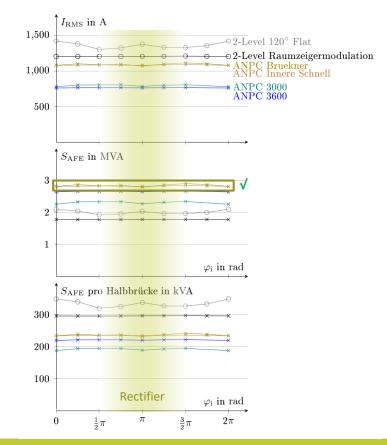
Actual Challenge

- practical implementation
- limited space
- small stray inductance required
- high pulse current
- ¬ losses / cooling

See also: A. Höhnel, S. Wettengel, S. Puteanus, and S. Bernet, "Oscillation and overvoltage damping in an all-sic three level anpc," in 2025 ECCE Europe. IEEE, Sep. 2025



Damped Decoupling Circuit

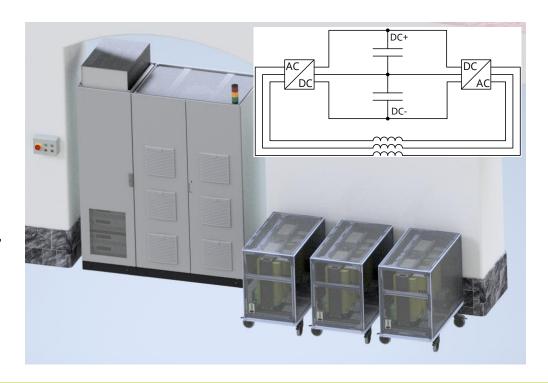


Simulation based on Experiments

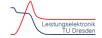
Comparison

- Measurements of switching behavior
- ¬ Switching losses → Simulation
- Simulation compares e.g. Topology (2L, 3L) and different modulation schemes
- Favorite options are shown in diagram
- Full-Scale Demonstrator will be 3L-ANPC-VSC

See also: S. Puteanus, S. Wettengel, A. Höhnel, and S. Bernet, "Performance Evaluation of Grid-Connected Active Front Ends using 2.3 kV SiC-MOSFET Half Bridges," in 2025 ECCE Europe. IEEE, Sep. 2025



Full-Scale Demonstrator


- Test of two 3L-ANPC-VSCs in back-to-back configuration
- Construction in Görgesbau,
 TUD Dresden University of Technology
- Culmination of project HyLeiT from Chair of Power Electronics' point of view

Full-Scale Demonstrator

Selection of technical parameters:

¬ DC voltage: ±1,350 V

 \neg AC current: 1,000 A_{RMS}

¬ AC power: ≈2 MVA

¬ Loss estimation: <60 kW</p>

Final steps:

¬ Full power test imminent

Future publication planned

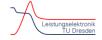
HyLeiT Publications: TUD – Chair of Power Electronics

- S. Puteanus, S. Wettengel, A. Höhnel, S. Bernet:
 - "Performance Evaluation of Grid-Connected Active Front Ends using 2.3 kV SiC-MOSFET Half Bridges" (09/2025)
- A. Höhnel, S. Wettengel, S. Puteanus, S. Bernet:
 - "Oscillation and Overvoltage Damping in an All-SiC Three-Level ANPC-VSC " (09/2025)
- T. Miličić, S. Puteanus, X. Becker, S. Bernet, T. Vidaković-Koch:
 - "Predicting electrolyzer performance under forced periodic operation using nonlinear frequency response method", (06/2025)
- M. Bruhns, P. Schegner, M. Hehemann, R. Juchem, S. Wettengel: "Special Requirements on Protection Systems in Electrolysis plants" (04/2025)
- S. Puteanus, T. Miličić, U. Feldmann, T. Vidaković-Koch: "Efficiency improvement by pulsed water electrolysis: An unjustified hope" (03/2025)
- L. Jostes, S. Puteanus:
 - "Using a Doubly Fed Induction Machine (DFIM) in an Active Filter for Grid Commutated Rectifiers A Feasibility Study " (10/2024)
- S. Puteanus, S. Wettengel, M. Meißner, S. Bernet:
 - "Multipulse Rectifiers for Large Scale Water-Electrolysis Reactive Power and Harmonics" (09/2024)

Medium Voltage Semiconductor Lab "Room 25"

- ¬ Test setup with two independent DC-links
 - In parallel for two-level topologies
 - In series for three-level topologies
- Tests on modules and press packs possible
- High level of automation through MATLAB
- Selection of technical parameters:

¬ Max. voltage: ±6.5 kV


Max. current: 5 kA

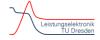
¬ Junctiontmp.: −40 °C to +150 °C

Surge Current Source "SBGL"

- Arbitrary surge current generator
- ¬ Modular system → 16 cells, 32 half-bridges
- High fault tolerance through arc detection
- Selection of technical parameters:

¬ Max. energy: ~100 kJ

¬ Max. voltage: 1,200 V


¬ Max. current: 100 kA

See also: S. Wettengel, A. Hoffmann, J. Kienast, L. Lindenmüller and S. Bernet, "Topology, Design, and Characteristics of a Modular, Dynamic 100 kA Surge Current Source With Adjustable Current Shape," in *IEEE Open Journal of Industry Applications*, vol. 5, pp. 29-42, 2024, doi: 10.1109/OJIA.2024.3353328

Modular Multilevel Matrix Converter (M3C)

- Possible energy storage solution
 - → Flywheel storage
- Research into novel control and protection algorithms
- Selection of technical parameters:

¬ Grid voltage: 400 V, 50 Hz

Submodules: 108 (12 per arm)

¬ Power: 15 kVA

See also: J. Kienast, A. Hoffmann, M. Höer and S. Bernet, "Novel Distributed Control Platform and Algorithm for a Modular Multilevel Matrix Converter," in *IEEE Transactions on Power Electronics*, vol. 38, no. 7, pp. 8089-8101, July 2023, doi: 10.1109/TPEL.2023.3260241

Free Programmable Real-time Control (FPRC)

- ¬ Based on Xilinx Zynq 7015 SoC
- Employing "<u>Lab Analyzer</u>" open source control software

Honorary Mentions

- ¬ GaN semiconductor test bench
- Setup for thermal impedance measurements
- Drive converter test setup with5 kW induction motor
- ¬ 6 kA surge current source
- FlexGrid: research on inverter-based grid

Thank you for your attention!

Dr.-Ing. Stefan Wettengel

Tel.: 0351-463-34569 • E-Mail: stefan.wettengel@tu-dresden.de